Proceedings from the SPIE Optics + Photonics 2014 conference have been published. These include Chris F's paper on optical and acoustic manipulation of microbubbles in a microfluidic device: C. R. Fury, P. H. Jones and G. Memoli. 'Multi-scale manipulation of microbubbles employing simultaneous optical and acoustical trapping', Proc SPIE 9164, Optical Trapping and Optical Micromanipulation XI, 91642Z, doi: 10.1117/12.2061622 (2014).
From the abstract: We present a dual-modality microbubble trapping system that incorporates the fine spatial resolution of optical tweezers, with the long range, high force manipulation of acoustic tweezers, in a single microfluidic system. We demonstrate aggregation of polymer microbubbles in the node of an acoustic field, and subsequent selection and separation of a single microbubble using holographic optical tweezers. We further characterize the optical tweezers by measuring the transverse spring constant, and use the calibrated trap to determine the acoustic force on the bubble for varying parameters of optical trap diameter and power, and acoustic frequency and driving voltage. Further development of the system to include acoustic emission measurement is presented, with the goal of having a multi-purpose mechanical and cavitation detection set-up combined into a single system
No comments:
Post a Comment