Monday, 13 August 2012
SPIE Optics + Photonics Conference
Marios and Susan are attending the Optical Trapping and Optical Micromanipulation IX conference, part of SPIE Optics + Photonics, in San Diego, CA, 12 - 16 August. Susan will be giving a talk 'Optical squeezing of microbubbles: Ray optics and Mie scattering calculations' (Paper 8458-51) on Wed 16 Aug (Session 10: Combining optical traps with acoustics) and presenting a poster on 'Shaping of the trapping volume in optical tweezers using cylindrical vector beams' (Paper 8458-110). Marios will be presenting a poster 'Optically bound particle structures in evanescent wave traps' (Paper 8458-124).
Wednesday, 8 August 2012
Paper published in Optics Letters
Our paper 'Optical trapping of single walled carbon nanotubes with cylindrical vector beams has been published as M. G. Donato et al, Opt. Lett. 37 3381-3383 (2012).
From the abstract: We use laser beams with radial and azimuthal polarization to optically trap carbon nanotubes. We measure force constants and trap parameters as a function of power showing improved axial trapping efficiency with respect to linearly polarized beams. The analysis of the thermal fluctuations highlights a significant change in the optical trapping potential when using cylindrical vector beams. This enables the use of polarization states to shape optical traps according to the particle geometry, as well as paving the way to nanoprobe-based photonic force microscopy with increased performance compared to a standard linearly polarized configuration.
This paper has also been selected for inclusion in the Virtual Journal of Biomedical Optics 7 (2012)
From the abstract: We use laser beams with radial and azimuthal polarization to optically trap carbon nanotubes. We measure force constants and trap parameters as a function of power showing improved axial trapping efficiency with respect to linearly polarized beams. The analysis of the thermal fluctuations highlights a significant change in the optical trapping potential when using cylindrical vector beams. This enables the use of polarization states to shape optical traps according to the particle geometry, as well as paving the way to nanoprobe-based photonic force microscopy with increased performance compared to a standard linearly polarized configuration.
This paper has also been selected for inclusion in the Virtual Journal of Biomedical Optics 7 (2012)
Subscribe to:
Posts (Atom)