Friday 20 July 2018

Paper published in Ocular Immunology and Inflammation

Our paper on the defomability of red blood cells take from patients with Birdshot
Chorioretinopathy has been published as R. Agrawal et al 'Non-occlusive retinal vascular inflammation and role of red blood cell deformability in birdshot chorioretinopathy', Ocular Immunology and Inflammation doi:10.1080/09273948.2018.1485959 (2018).  


From the abstract:
Purpose: To investigate differences in red blood cell (RBC) deformability between birdshot chorioretinopathy (BCR) subjects and matched controls, and to postulate its relationship with lack of vascular occlusion in BCR.
Methods: In a single center, prospective, non-randomized mechanistic study, blood samples were collected from eight healthy controls and nine BCR patients, and subjected to biochemical and hematological tests, as well as RBC indices assessment using dual-beam optical tweezers.
Results: The mean age of the controls was 52.37 ± 10.70 years and BCR patients was 53.44 ± 12.39 years. Initial cell size (Io) for the controls was 8.48 ± 0.25 μm and 8.87 ± 0.31 μm for BCR RBCs (p = 0.014). The deformability index (DI) for the controls was 0.066 ± 0.02 and that for BCR RBCs was 0.063 ± 0.03 (p = 0.441).
Conclusion: There was no statistically significant difference in DI between RBCs from BCR and healthy controls. This may explain the rare occurrence of retinal vascular occlusion despite the underlying vasculitic pathophysiology of BCR.


Wednesday 31 January 2018

Paper published in Nanoscale

Our work on trapping 2D materials has been published as M. G. Donato, E. Messina, A. Foti, T. Smart, P. H. Jones, M. A. Iatì, R. Saija, P. G. Gucciardi & O. M. Maragò.  'Optical trapping and optical force positioning of two dimensional materials', Nanoscale 10 1245-1255 (2018).

From the abstract: In recent years, considerable effort has been devoted to the synthesis and characterization of two-dimensional materials. Liquid phase exfoliation (LPE) represents a simple, large-scale method to exfoliate layered materials down to mono- and few-layer flakes. In this context, the contactless trapping, characterization, and manipulation of individual nanosheets hold perspectives for increased accuracy in flake metrology and the assembly of novel functional materials. Here, we use optical forces for high-resolution structural characterization and precise mechanical positioning of nanosheets of hexagonal boron nitride, molybdenum disulfide, and tungsten disulfide obtained by LPE. Weakly optically absorbing nanosheets of boron nitride are trapped in optical tweezers. The analysis of the thermal fluctuations allows a direct measurement of optical forces and the mean flake size in a liquid environment. Measured optical trapping constants are compared with T-matrix light scattering calculations to show a quadratic size scaling for small size, as expected for a bidimensional system. In contrast, strongly absorbing nanosheets of molybdenum disulfide and tungsten disulfide are not stably trapped due to the dominance of radiation pressure over the optical trapping force. Thus, optical forces are used to pattern a substrate by selectively depositing nanosheets in short times (minutes) and without any preparation of the surface. This study will be useful for improving ink-jet printing and for a better engineering of optoelectronic devices based on two-dimensional materials.